GCSE Maths Formula Sheet

📘 GCSE Maths Formula Sheet

Get the GCSE Maths Formula Sheet with all key formulas, from geometry to algebra, with detailed examples. Perfect for revision and exam preparation. Master essential maths concepts with this comprehensive guide to ace your GCSEs!

📐 Geometry Formulas

  • Area of Circle: A = π × r²
    Example: A = π × 5² = 78.54 cm²
  • Pythagoras' Theorem: a² + b² = c²
    Example: √(3² + 4²) = 5 cm
  • Area of Triangle: A = ½ × base × height
    Example: A = ½ × 10 × 6 = 30 cm²
  • Area of Parallelogram: A = base × height
    Example: A = 8 × 5 = 40 cm²
  • Area of Trapezium: A = ½ × (a + b) × height
    Example: A = ½ × (6 + 10) × 4 = 32 cm²
  • Volume of Prism: V = area of cross section × length
    Example: V = 12 × 8 = 96 cm³
  • Volume of Cylinder: V = π × r² × h
    Example: V = π × 4² × 10 ≈ 502.65 cm³
  • Volume of Cone: V = ⅓ × π × r² × h
    Example: V = ⅓ × π × 3² × 9 = 25.13 cm³
  • Volume of Sphere: V = 4/3 × π × r³
    Example: V = 4/3 × π × 5³ = 523.6 cm³
  • Surface Area of Sphere: A = 4 × π × r²
    Example: A = 4 × π × 6² = 452.39 cm²
  • Surface Area of Cone: A = π × r × (r + l)
    Example: A = π × 4 × (4 + 7) = 44.41 cm²
  • Surface Area of Cylinder: A = 2 × π × r × (r + h)
    Example: A = 2 × π × 3 × (3 + 8) = 66.24 cm²

🧮 Algebra Formulas

  • Compound Interest: A = P(1 + r/n)^(nt)
    Example: ≈ 1104.71
  • Simple Interest: I = P × r × t
    Example: I = 1000 × 0.05 × 3 = 150
  • Percentage Increase: New = Original × (1 + %)
    Example: 200 × 1.1 = 220
  • Percentage Decrease: New = Original × (1 - %)
    Example: 500 × 0.8 = 400
  • Expanding Brackets: a(b + c) = ab + ac
    Example: 3(x + 2) = 3x + 6
  • Factorizing Quadratics: ax² + bx + c = a(x + p)(x + q)
    Example: x² + 5x + 6 = (x + 2)(x + 3)

📐 Trigonometry Formulas

  • SOH CAH TOA:
    Example: tan(θ) = 4/3 → θ ≈ 53.13°
  • Sine Rule: a/sinA = b/sinB = c/sinC
  • Cosine Rule: c² = a² + b² − 2ab × cos(C)

📊 Probability & Statistics

  • Probability: P(A) = favorable / total
    Example: Rolling a 3 = 1/6
  • Mean (Average): Sum / Count
    Example: (5 + 10 + 15) / 3 = 10
  • Standard Deviation: σ = √[(Σ(x - μ)²) / N]